Journals

A deep-learning model for identifying fresh vertebral compression fractures on digital radiography

European Radiology
September 21, 2022
Objectives

To develop a deep-learning (DL) model for identifying fresh VCFs from digital radiography (DR), with magnetic resonance imaging (MRI) as the reference standard.

Methods

Patients with lumbar VCFs were retrospectively enrolled from January 2011 to May 2020. All patients underwent DR and MRI scanning. VCFs were categorized as fresh or old according to MRI results, and the VCF grade and type were assessed. The raw DR data were sent to InferScholar Center for annotation. A DL-based prediction model was built, and its diagnostic performance was evaluated. The DeLong test was applied to assess differences in ROC curves between different models.

Results

A total of 1877 VCFs in 1099 patients were included in our study and randomly divided into development (n = 824 patients) and test (n = 275 patients) datasets. The ensemble model identified fresh and old VCFs, reaching an AUC of 0.80 (95% confidence interval [CI], 0.77-0.83), an accuracy of 74% (95% CI, 72-77%), a sensitivity of 80% (95% CI, 77-83%), and a specificity of 68% (95% CI, 63-72%). Lateral (AUC, 0.83) views exhibited better performance than anteroposterior views (AUC, 0.77), and the best performance among respective subgroupings was obtained for grade 3 (AUC, 0.89) and crush-type (AUC, 0.87) subgroups.

Conclusion

The proposed DL model achieved adequate performance in identifying fresh VCFs from DR.

Keywords

Deep learning; Fractures; Radiography; Spine; compression.

Authors
Weijuan Chen, Xi Liu, Kunhua Li, Yin Luo, Shanwei Bai, Jiangfen Wu, Weidao Chen, Mengxing Dong, Dajing Guo
Subscribe to know first

Receive monthly news and insights in your inbox. Don't miss out!

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.